您的位置 首页 风水八字

钪怎么读 钪元素

钪是做什么用的 钪是一种化学元素,元素符号是Sc,原子序数是21。单质是一种柔软、银白色的过渡金属,常跟钆、铒…

钪是做什么用的

钪是一种化学元素,元素符号是Sc,原子序数是21。单质是一种柔软、银白色的过渡金属,常跟钆、铒等混合存在,产量很少,在地壳中的含量约为0.0005%。钪常用来制特种玻璃、轻质耐高温合金。物理性质:熔点:1814 K(1541 °C)                 沸点:3103 K(2830 °C)                 性状:一种柔软、银白色的金属
摩尔体积:汽化热:314.2 kJ/mol                 熔化热:14.1 kJ/mol                蒸汽压:22.1 Pa(1812K)声速:无数据(293.15K)电负性:1.36(鲍林标度)比热容:568 J/(kg·K)电导率: Ω热导率:15.8 W/(m·K)
化学性质:元素名称:钪                英文名:Scandium                元素符号:Sc                原子序数:21                元素系类:过渡金属相对原子质量:44.955912(6)原子半径:160(184)pm共价半径:144pm电子在每能级的排布:2,8,9,2
常见化合价:+3(弱碱性)晶体结构:六方密排晶格

钪怎么读 钪元素插图

钪怎么读音是什么

钪读音:kàng,声母是k,韵母是àng,声调是四声。钪释义:1、一种金属元素,银白色,质软,易溶于酸。2、一般在空气中迅速氧化而失去光泽。主要存在于极稀少的钪钇石中。可用以制特种玻璃及轻质耐高温合金等。

扩展资料

汉字笔画:相关组词:无形近字:抗抗拼音:kàng释义:1、抵御:抗击;抗争;抗拒;抵抗;顽抗。2、拒绝:抗议;抗上;抗命;抗税。3、对等:抗衡(力量不相上下的对抗)。

钪的应用领域

比较有趣的是,钪的用途(作为主要工作物质,而不是用于掺杂的)都集中在很光明的方向,称他为光明之子也不为过。
钪的第一件法宝叫做钪钠灯,可以用来给千家万户带来光明。这是一种金属卤化物电光源:在灯泡中充入碘化钠和碘化钪,同时加入钪和钠箔,在高压放电时,钪离子和钠离子分别发出他们的特征发射波长的光,钠的谱线为589.0和589.6nm两条著名的黄色光线,而钪的谱线为361.3~424.7nm的一系列近紫外和蓝色光发射,因为互为补色,产生的总体光色就是白色光。正是由于钪钠灯具有发光效率高、光色好、节电、使用寿命长和破雾能力强等特点,使其可广泛用于电视摄像和广场、体育馆、马路照明, 被称为第三代光源。在中国这种灯还是作为新技术被逐渐推广的,而在一些发达国家,这种灯早在80年代初就被广泛使用了。
钪的第二件法宝是太阳能光电池,可以将撒落地面的光明收集起来,变成推动人类社会的电力。在金属-绝缘体-半导体硅光电池和太阳能电池中,钪是最好的阻挡金属。
他的第三件法宝叫做γ射线源,这个法宝自己就能大放光明,不过这种光亮我们肉眼接收不到,是高能的光子流。我们平常从矿物中提炼出来的是45Sc,这是钪的唯一一种天然同位素,每一个45Sc的原子核中有21个质子和24个中子。倘若我们像把猴子放到太上老君的炼丹炉中炼上七七四十九天一样将钪放在核反应堆中,让他吸收中子辐射,原子核中多一个中子的46Sc就诞生了。46Sc这种人工放射性同位素可以当作γ射线源或者示踪原子,还可以用来对恶性肿瘤进行放射治疗。还有像钇镓钪石榴石激光器,氟化钪玻璃红外光导纤维,电视机上钪涂层的阴极射线管之类的用途简直不知凡几,看来钪生来就和光明有缘呢。 单质形式的钪,已经被大量应用于铝合金的掺杂。在铝中只要加入千分之几的钪就会生成Al3Sc新相,对铝合金起变质作用,使合金的结构和性能发生明显变化。加入0.2%~0.4%的Sc(这个比例也真的和家里炒菜放盐的比例差不多,只需要那么一点)可使合金的再结晶温度提高150~200℃,且高温强度、结构稳定性、焊接性能和抗腐蚀性能均明显提高,并可避免高温下长期工作时易产生的脆化现象。高强高韧铝合金、新型高强耐蚀可焊铝合金、新型高温铝合金、高强度抗中子辐照用铝合金等,在航天、航空、舰船、核反应堆以及轻型汽车和高速列车等方面具有非常诱人的开发前景。
钪也是铁的优良改化剂,少量钪可显著提高铸铁的强度和硬度。另外,钪还可用作高温钨和铬合金的添加剂。当然,除了为他人做嫁衣裳之外,因为钪具有较高熔点,而其密度却和铝接近,也被应用在钪钛合金和钪镁合金这样的高熔点轻质合金上,但是因为价格昂贵,一般只有航天飞机和火箭等高端制造业才会使用。 单质的钪一般应用于合金,而钪的氧化物也是物以类聚地在陶瓷材料上面起到了重要的作用。像可以用作固体氧化物燃料电池电极材料的四方相氧化锆陶瓷材料有一种很特别的性质,在这种电解质的电导会随着温度和环境中氧的浓度增高而增大。但是这种陶瓷材料的晶体结构本身不能稳定存在,不具有工业价值;必须要在其中掺杂一些能够将这种结构固定下来的物质才能够保持原有的性质。掺入6~10%的氧化钪就好像混凝土结构一样,让氧化锆能够稳定在四方形的晶格上。
还有像高强度,耐高温的工程陶瓷材料氮化硅做增密剂和稳定剂。
氧化钪作为增密剂,可以在细小颗粒的边缘生成难熔相Sc2Si2O7,从而减小工程陶瓷的高温变形性,与添加其它氧化物相比能更好改善氮化硅的高温机械性能。 在农业上可以对玉米 甜菜 豌豆 小麦 向日葵等种子做硫酸钪(浓度一般为10-3~10-8mol/L 不同的植物会有所不同)处理,已取得促进发芽的实际效果,8小时后根和芽的干燥重量和幼苗相比,分别增加37%和78%,但原因机理尚在研究中。
从尼尔森注意到原子量数据的亏欠到今天,钪进入人们的视野不过一百年二十多年,却差不多坐了一百年的冷板凳,直到上个世纪后期材料科学的蓬勃发展才给他带来了生机。到今天,连同钪在内的稀土元素都已经成为了材料科学中炙手可热的明星,在成千上万的体系中发挥着千变万化的作用,每天都在给我们的生活带来多一点的便利,创造的经济价值更是难以计量。

钪的发现由来

钪(旧译作鉰、鏮)是一种化学元素,它的化学符号是Sc,它的原子序数是21,是一种柔软、银白色的过渡性金属。常跟钆、铒等混合存在,产量很少。钪(Scandium),旧译作鉰、鏮,为一种化学元素,它的化学符号是Sc,它的原子序数是21,是一种柔软、银白色的过渡性金属。常跟钆、铒等混合存在,产量很少。
1879年拉斯·弗雷德里克·尼尔森和他的团队在斯堪的纳维亚半岛的黑稀金矿(euxenite)和硅铍钇矿(gadolinite)中发现这个新的元素[1],其名称Scandium是来自Scandia,斯堪的纳维亚半岛的拉丁文名称。早期,钪和钇和镧一起被列入稀土金属。
钪用来制特种玻璃、轻质耐高温合金。
kàngㄎㄤˋ形声。字从金,从亢(gāng),亢亦声。“亢”意为“管子”、“管道”。“金”与“亢”联合起来表示“金属管子(或金属管道)”说明:1.本字原为古代就有的汉字,并非专为近代化学元素而造。后借用为化学元素Scandium(Sc)的中文译名。2.本字《说文》所无。
◎ 一种金属元素,银白色,质软,易溶于酸。一般在空气中迅速氧化而失去光泽。主要存在于极稀少的钪钇石中。可用以制特种玻璃及轻质耐高温合金等。
在元素化学里,有一系列性质非常接近的金属元素被称为稀土元素。这一系列中包括了十五个镧系元素–镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)
可以形成Eb₂O₃形式的化合物,其比重3.5,碱性强于氧化铝,弱于氧化钇和氧化镁;是否能与氯化铵反应还是疑问。钪土Sc₂O₃,其比重3.86,碱性强于氧化铝,弱于氧化钇和氧化镁,与氯化铵不反应。
盐类无色,与氢氧化钾和碳酸钠形成胶体沉淀,各种盐类均难以完好结晶。钪盐无色,与氢氧化钾和碳酸钠形成胶体沉淀,硫酸盐极难结晶。
碳酸盐不溶于水,可能形成碱式碳酸盐沉淀。碳酸钪不溶于水,并容易脱掉二氧化碳。
硫酸复盐可能不形成矾。 钪的硫酸复盐不成矾。
无水氯化物EbCl₃挥发性低于氯化铝,比氯化镁更容易水解。 ScCl₃升华温度850℃,AlCl₃则为100℃,在水溶液中水解。
Eb不由光谱发现。 Sc不由光谱发现。
在那个不但对于元素的电子层结构一无所知(连电子都是1899年才发现的),甚至还有权威如杜马这样的化学家对原子论都持怀疑态度。能将一个未发现的元素的性质描述得如此精准,真是让读者后背泛起一层隐隐的凉意。

钪的性质


钪(Sc) 基本知识介绍

� �1879年,瑞典的化学教授尼尔森(L.F.Nilson, 1840~1899)和克莱夫(P.T.Cleve, 1840~1905)差不多同时在稀有的矿物硅铍钇矿和黑稀金矿中找到了一种新元素。他们给这一元素定名为"Scandium"(钪),钪就是门捷列夫当初所预言的"类硼"元素。他们的发现再次证明了元素周期律的正确性和门捷列夫的远见卓识。 ��

钪比起钇和镧系元素来,由于离子半径特别小,氢氧化物的碱性也特别弱,因此,钪和稀土元素混在一起时,用氨(或极稀的碱)处理,钪将首先析出,故应用"分级沉淀"法可比较容易地把它从稀土元素中分离出来。另一种方法是利用硝酸盐的分极分解进行分离,由于硝酸钪最容易分解,从而达到分离的目的。 �

用电解的方法可制得金属钪,在炼钪时将ScCl3、KCl、LiCl共熔,以熔融的锌为阴极电解之,使钪在锌极上析出,然后将锌蒸去可得金属钪。另外,在加工矿石生产铀、钍和镧系元素时易回收钪。钨、锡矿中综合回收伴生的钪也是钪的重要来源之一。 钪在化合物中主要呈3价态,在空气中容易氧化成Sc2O3而失去金属光泽变成暗灰色。 ��

钪能与热水作用放出氢,也易溶于酸,是一种强还原剂。钪的氧化物及氢氧化物只显碱性,但其盐灰几乎不能水解。钪的氯化物为白色结晶,易溶于水并能在空气中潮解。在冶金工业中,钪常用于制造合金(合金的添加剂),以改善合金的强度、硬度和耐热和性能。如,在铁水中加入少量的钪,可显著改善铸铁的性能,少量的钪加入铝中,可改善其强度和耐热性。在电子工业中,钪可用作各种半导体器件,如钪的亚硫酸盐在半导体中的应用已引起了国内外的注意,含钪的铁氧体在计算机磁芯中也颇有前途。在化学工业上,用钪化合物作酒精脱氢及脱水剂,生产乙烯和用废盐酸生产氯时的高效催化剂。在玻璃工业中,可以制造含钪的特种玻璃。在电光源工业中,含钪和钠制成的钪钠灯,具有效率高和光色正的优点。

元素名称:钪

元素原子量:44.96

元素类型:金属

发现人:尼尔森 发现年代:1876年

发现过程:

1876年,瑞典的尼尔森,在研究黑稀金矿时,发现了钪。

元素描述:

银白色金属,质软。密度2.9890克/厘米3。熔点1541℃。沸点2831℃。常见化合价+3。第一电离能为6.54电子伏特。易溶于水,可与热水作用,在空气中容易变暗。

元素来源:

从钨矿、锡石及含有其他稀土的矿石中回收制得,主要矿物为钪钇石,极稀少。

元素用途:

可以制造特种玻璃和合金等。它的化合物和氧化钪可用来作催化剂。

元素辅助资料:

在镱土发现后第二年,1879年瑞典化学家尼尔森从镱土中分离出一个新的土,称为钪土(scandia),元素名称是scandium,元素符号为Sc。

瑞典化学家克利夫在研究了钪的一些性质后,指出它就是门捷列夫根据元素周期律预言的类硼。

随着钪以及其他一些稀土元素的发现,完成了发现稀土元素第三阶段的另一半。

钪的理化性质

熔点:1814 K(1541 °C)
沸点:3103 K(2830 °C)
密度:
性状:一种柔软、银白色的金属

摩尔体积:
汽化热:314.2 kJ/mol
熔化热:14.1 kJ/mol
蒸汽压:22.1 Pa(1812K)
声速:无数据(293.15K)
电负性:1.36(鲍林标度)
比热容:568 J/(kg·K)
电导率: Ω
热导率:15.8 W/(m·K) 元素名称:钪
英文名:Scandium
元素符号:Sc
原子序数:21
元素系类:过渡金属
CAS号:7440-20-2
地壳含量: %
相对原子质量:44.955912(6)
原子半径:160(184)pm
共价半径:144pm
价电子排布:
电子在每能级的排布:2,8,9,2
常见化合价:+3(弱碱性)
晶体结构:六方密排晶格 电离性质   电离能 第一电离能 633.1 kJ/mol 第二电离能 1235.0 kJ/mol 第三电离能 2388.6 kJ/mol 第四电离能 7090.6 kJ/mol 第五电离能 8843 kJ/mol 第六电离能 10679 kJ/mol 第七电离能 13310 kJ/mol 第八电离能 15250 kJ/mol 第九电离能 17370 kJ/mol 第十电离能 21726 kJ/mol

钪合金车架骑行中有什么好处?

钪合金,在轻量上可以在获得安全冲击强度下,有接近碳纤维的轻量,但是其依然可以保持很高刚性,甚至可以延展做到0.6mm的铝族合金极限壁厚。铝合金车架在骑行圈受到了众多骑友的青睐,以其更美观的外形与涂装、更高的性价比、更轻量等各种前沿车架技术的运用占领了一大块骑行市场。钪合金车架能较大程度提高车架的强度,采用抽管技术,能抽得更薄,让车架更轻,但足量的钪融入,其价格必定很贵。让重量更轻的同时保证强度,重量基本可以接近碳纤维,但是价格很贵,一千多克的车架中使用的钪合金价格就过千,还未算铝合金的成本,以及人工加工费。扩展资料:车架作用及布置要求现代汽车绝大多数都具有作为整车骨架的车架。汽车绝大多数部件及总成都是通过车架来固定的,如发动机、传动系、悬架、转向系统、驾驶室、货箱和相关操作机构。车架起到支撑连接汽车各零部件的作用,并承受来自车内外的各种载荷。车架的结构形式首先应满足汽车总布置的要求。汽车在复杂的行驶过程中,固定在车架上的各总成和部件之间不应该发生干涉。汽车在崎岖道路上行驶时,车架在载荷作用下可能产生扭转变形以及在纵向平面内的弯曲变形。当一边车轮遇到障碍时,还可能使整个车架扭曲成菱形。这些变形将会改变安装在车架上的各部件之间的相对位置,从而影响其正常工作。因此,车架还应具有足够的强度和适当的刚度。为了提高汽车整车的轻量化水平,要求车架质量尽可能小。此外,车架应布置得离地面近一些,以使汽车重心降低,以利于提高汽车的行驶稳定性。这一点对于客车和轿车来说尤为重要。 早期设计早期汽车所使用的车架,大多都是由笼状的钢骨梁柱所构成的,也就是在两支平行的主梁上,以类似阶梯的方式加上许多左右相连的副梁制造而成。车体建构在车架之上,至于车门、沙板、引擎盖、行李厢盖等钣件,则是另外再包覆于车体之外,因此车体与车架其实是属于两个独立的构造。这种设计的最大好处,在于轻量化与刚性得以同时兼顾,因此受到了不少跑车制造商的青睐,早期的法拉利与兰博基尼都是采用的这种设计。由于钢骨设计的车架必须通过许多接点来连结主梁和副梁,加之笼状构造也无法腾出较大的空间,因此除了制造上比较复杂、不利于大量生产之外,也不适合用在强调空间感的四门房车上。因此单体结构的车架在车坛上渐渐成为主流,笼状的钢骨车架也逐渐改由这种将车体与车架合二为一的单体车架所取代(如:货柜车),单体车架一般以“底盘”称之,也就是衍生自英文的“Platform”。钪合金是一种高性能合金,钪合金的高性能化有几种途径,其中微合金化强韧化是近20年来高性能铝合金研究的前沿领域。所谓微合金化强韧化通常是指将质量百分数小于0.5%的微量元素添加或者复合添加到钪合金中借以大幅度提高合金强度和韧性的一种技术。 钪作为一种过渡族元素以及稀土元素加到合金中,不仅能够显著细化铸态合金晶粒、提高再结晶温度从而提高钪合金的强度和韧性,而且能显著改善钪合金的可焊性、耐热性、抗蚀性、热稳定性和抗中子辐照损伤的作用。因此,钪合金被认为是新一代航天航空、舰船、兵器用高性能合金结构材料。国内正在流行一种高纯钪合金的生产方法。涉及一种利用现有三层液铝精炼电解槽,在电解质中加入氯化钪或氟化钪,电解生产高纯铝钪合金的方法。其特征在于将氯化钪或氟化钪加入三层液电解的电解质中直接电解生产高纯钪合金,电解质采用氟氯化物或纯氟化物,其操作控制参数为:电解温度:650℃~850℃,电解槽工作电压:4.0V~7.0V,电解质厚度:4.0cm~15.0cm。参考资料来源:百度百科-车架                        百度百科-钪合金

本文来自网络,不代表小逸算命网立场,转载请注明出处:http://www.chinaprokits.com.cn/news/1792.html

发表评论

您的电子邮箱地址不会被公开。

返回顶部